吼!!
突然,一声撕天裂地的咆哮声,从远方轰隆传来。
然后苍天霸拳三人,就目瞪口呆的看到……
竟有一条三首六爪赤鳞遍体,长达数十上百米背生四翼的龙形巨兽,从上千米外的森林边缘嘶吼着滑翔而来,边滑翔还边从口中喷射道道阴绿毒光,俨然一副毒性版本基多拉的模样。
而看它的目标,好像就是他们三人。
「艹!!」
苍天霸拳咬牙怒吼,「刚复活就碰见这东西,我怎么那么倒霉?!」
吼罢,便全然不再理会那同样目瞪口呆的元舟崩与o两人,自顾自的朝远方狂奔逃离而去。
后两者亦在愣神过后,亦惨叫着朝左右两边逃命去也。
于是,这五个穆苍故人重生复活后,他们的命运即在种种原因下,走上了各自不同的道路。
而造成了这一切的穆苍,此刻却已然驻足在了阿列夫二领域中。
……
在数学王国中,存在有各种各样各形各貌的"成员"。
有的"成员"很庞大,有的"成员"却很渺小;有的"成员"性子很急,有的"成员"却是慢性子;有的"成员"丑陋臃肿,有的"成员"却高挑艳丽。
他们互相间之所以不会发生冲突,之所以能够协同合作而不发生矛盾,则又与他们所处的疆域有关。
不同的疆域,便会有不同的自然环境,换而言之即是有不同的……背景公理。
譬如穆苍所在的疆域,就是被选择公理(ac)与zf公理,所牢牢统治着。
这两大公理合一称呼,即是zfc公理系统。
而在zfc背景公理下,所谓的幂集即可以认为,是一个集合所有子集的集合。
一般而言,一个基数为n的集合,其幂集的基数便是2?。
2?,显然要大于该集合的基数n。
由此可知,任何集合之幂集,其势必大于该集合之势。
这,便是康托尔定理。
此定理,亦可推广并成立于无穷集合领域。
譬如实数集的基数2??,就要比??更大。
于是由此类推,便又可得出2??比??更大,2??即是比??更大的集合这一结果。
同时连续统假设认为,并不存在一个基数大于可数集而又小于实数
集的集合。
而若将这一假设扩展到??层面,即假设??与??间不存在另一个阿列夫数,也就是假设??2??。
甚至是扩展到更大更广的范围,即假设??2????。
那么这种扩展开来的连续统假设,便是广义连续统假设。
倘若这一假设成立,那么??就是实数集幂集的基数。
其,等同于一切定义于实数域的函数之总数。
且因那任何函数都可以画作为一条曲线,所以??亦可以粗略视作为一切曲线的总集合。
同时又因函数既可连续亦可不连续,因而??所谓的对应所有曲线,指代的即是一切或连续或不连续的曲线总集合。
至于那单指连续函数所对应的所有连续曲线的总集合,则是??。
??之所以是连续函数的总数,则因为连续函数的和以及倍数,依然是连续函数。
且又因连续函数集合可构成一个?维向量空间,所以理论上的天然状态下的未被阿列夫家族权格力量干涉过的阿列夫零领域整体,才会以无尽劫海那般样式的无穷维态,呈现并驻立于大千世间。
因而,当穆苍真正到达阿列夫二领域后。
祂所看到的四面八方,所感知到的上下左右。
便是一幅幅由无数根或蜿蜒曲折、或流畅顺滑、或断续隔连、或错综复杂的精妙曲线,所编织筑构而成的超流动态、超立体态、超穷数维态的无边无际壮丽图卷。
「真是……瑰丽呀。」
感叹着,矗立于一切所有的未明未存边缘之处的穆苍,放眼望去。
就看到了一片又一片,由丝丝缕缕或大或小或明或暗无穷无尽又无穷无尽闪烁放射着种种或诡谲、或绮丽、或怪幻、或神异之光辉,汇聚集合堆栈垒砌而成的浩瀚曲线海洋。
这些美丽的曲线犹如一条条光河,涤荡着、交织着、旋转着就形成了一座又一座无边无际的绚烂迷宫。
与此同时,在那一座座如心脏般诡异搏动的浩大迷宫内,穆苍竟看到了一个个既仿若太古苍龙般厚重,又好似丝绸绵絮般轻盈,亦犹如深渊幽蛇般扭曲的奇异事物,
从这些外形类似变种哥斯拉的奇物身上,祂赫然感觉到了一股股强烈至极的鲜活气息。
「所以……」
穆苍眸光一闪,「这些东西,都是??领域的生命体?」
免费阅读.